Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition

نویسندگان

  • Pavel Izmailov
  • Alexander Novikov
  • Dmitry Kropotov
چکیده

We propose a method (TT-GP) for approximate inference in Gaussian Process (GP) models. We build on previous scalable GP research including stochastic variational inference based on inducing inputs, kernel interpolation, and structure exploiting algebra. The key idea of our method is to use Tensor Train decomposition for variational parameters, which allows us to train GPs with billions of inducing inputs and achieve state-of-the-art results on several benchmarks. Further, our approach allows for training kernels based on deep neural networks without any modifications to the underlying GP model. A neural network learns a multidimensional embedding for the data, which is used by the GP to make the final prediction. We train GP and neural network parameters end-to-end without pretraining, through maximization of GP marginal likelihood. We show the efficiency of the proposed approach on several regression and classification benchmark datasets including MNIST, CIFAR-10, and Airline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DinTucker: Scaling up Gaussian process models on multidimensional arrays with billions of elements

Infinite Tucker Decomposition (InfTucker) and random function prior models, as nonparametric Bayesian models on infinite exchangeable arrays, are more powerful models than widely-used multilinear factorization methods including Tucker and PARAFAC decomposition, (partly) due to their capability of modeling nonlinear relationships between array elements. Despite their great predictive performance...

متن کامل

Thoughts on Massively Scalable Gaussian Processes

We introduce a framework and early results for massively scalable Gaussian processes (MSGP), significantly extending the KISS-GP approach of Wilson and Nickisch (2015). The MSGP framework enables the use of Gaussian processes (GPs) on billions of datapoints, without requiring distributed inference, or severe assumptions. In particular, MSGP reduces the standard O(n) complexity of GP learning an...

متن کامل

Scalable Nonparametric Multiway Data Analysis

Multiway data analysis deals with multiway arrays, i.e., tensors, and the goal is twofold: predicting missing entries by modeling the interactions between array elements and discovering hidden patterns, such as clusters or communities in each mode. Despite the success of existing tensor factorization approaches, they are either unable to capture nonlinear interactions, or computationally expens...

متن کامل

DinTucker: Scaling Up Gaussian Process Models on Large Multidimensional Arrays

Tensor decomposition methods are effective tools for modelling multidimensional array data (i.e., tensors). Among them, nonparametric Bayesian models, such as Infinite Tucker Decomposition (InfTucker), are more powerful than multilinear factorization approaches, including Tucker and PARAFAC, and usually achieve better predictive performance. However, they are difficult to handle massive data du...

متن کامل

Low-rank tensor approximation for high-order correlation functions of Gaussian random fields

Gaussian random fields are widely used as building blocks for modeling stochastic processes. This paper is concerned with the efficient representation of d-point correlations for such fields, which in turn enables the representation of more general stochastic processes that can be expressed as a function of one (or several) Gaussian random fields. Our representation consists of two ingredients....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07324  شماره 

صفحات  -

تاریخ انتشار 2017